Real-Time Dashboard Design | CONFIDENTIAL

REAL-TIME DASHBOARD
DESIGN GUIDE

KQL Dashboards • Visualizations • Auto-Refresh • Alerting

Version 1.0 | January 2026

Table of Contents

1. Real-Time Dashboard Overview
Real-Time Dashboards in Fabric enable instant visualization of streaming data from KQL databases. They provide sub-second refresh capabilities for operational monitoring and live analytics.
1.1 Dashboard Capabilities
1. Sub-second data refresh from KQL databases
1. Native KQL query integration
1. Multiple visualization types
1. Auto-refresh configuration
1. Parameter-driven filtering
1. Sharing and collaboration
1.2 Dashboard vs Power BI
	Aspect
	RT Dashboard
	Power BI

	Data Latency
	Sub-second
	Minutes (scheduled)

	Query Language
	KQL
	DAX/M

	Best For
	Operational monitoring
	Business analytics

	Data Source
	KQL Database
	Multiple

	Interactivity
	Parameters, drill-down
	Full interactivity

1.3 Use Cases
1. Operations center displays
1. IoT sensor monitoring
1. Application performance metrics
1. Security event dashboards
1. Manufacturing floor displays
1. Real-time KPI tracking

2. Dashboard Structure
2.1 Layout Components
1. Tiles: Individual visualizations
1. Pages: Organize related tiles
1. Parameters: Dynamic filtering
1. Time range: Global time filter
1. Base queries: Shared data sources
2.2 Tile Types
	Tile Type
	Best For
	Data Pattern

	Line Chart
	Time series trends
	Continuous values

	Bar Chart
	Category comparison
	Discrete categories

	Stat
	Single KPI value
	Aggregated metric

	Table
	Detailed data view
	Multiple columns

	Map
	Geographic data
	Lat/long or regions

	Heatmap
	Matrix visualization
	Two dimensions + value

2.3 Page Organization
1. Overview page: Key metrics summary
1. Detail pages: Deep-dive analysis
1. Alert page: Current issues and anomalies
1. Historical page: Trend analysis

3. KQL Queries for Dashboards
3.1 Stat Tile Query
// Current value
SensorData
| where TimeGenerated > ago(5m)
| summarize Value = avg(Temperature)

// With comparison
SensorData
| where TimeGenerated > ago(1h)
| summarize Current = avgif(Temperature, TimeGenerated > ago(5m)),
 Previous = avgif(Temperature, TimeGenerated <= ago(5m))
3.2 Time Series Query
// Line chart data
SensorData
| where TimeGenerated > ago(24h)
| summarize Value = avg(Temperature)
 by bin(TimeGenerated, 15m)
| order by TimeGenerated asc
3.3 Category Query
// Bar chart data
Events
| where TimeGenerated > ago(1h)
| summarize Count = count() by Category
| order by Count desc
3.4 Table Query
// Recent events table
Alerts
| where TimeGenerated > ago(1h)
| project TimeGenerated, Severity, Device, Message
| order by TimeGenerated desc
| take 100
3.5 Multi-Series Query
// Multiple lines by device
SensorData
| where TimeGenerated > ago(6h)
| summarize Value = avg(Temperature)
 by bin(TimeGenerated, 5m), DeviceId
| order by TimeGenerated asc

4. Parameters
Parameters enable dynamic filtering without modifying queries.
4.1 Parameter Types
	Type
	Description
	Use Case

	Single Select
	Choose one value from list
	Device selection

	Multi Select
	Choose multiple values
	Region filter

	Free Text
	User-entered value
	Search terms

	Time Range
	Date/time selection
	Analysis period

4.2 Using Parameters in Queries
// Single value parameter
SensorData
| where DeviceId == ['SelectedDevice']

// Multi-value parameter
SensorData
| where Region in (['SelectedRegions'])

// Time range parameter
SensorData
| where TimeGenerated between (['StartTime'] .. ['EndTime'])
4.3 Dynamic Parameter Values
// Query-driven parameter options
SensorData
| distinct DeviceId
| order by DeviceId asc

5. Auto-Refresh Configuration
5.1 Refresh Intervals
	Interval
	Use Case
	Considerations

	30 seconds
	Critical operational
	High query load

	1 minute
	Standard monitoring
	Balanced

	5 minutes
	Trend analysis
	Lower load

	No refresh
	Historical analysis
	Manual refresh only

5.2 Query Optimization for Refresh
1. Use appropriate time filters matching refresh
1. Pre-aggregate in KQL for faster queries
1. Limit result rows to what's visualized
1. Use make-series for time charts
1. Cache reference data with materialize()
5.3 Performance Considerations
1. Minimize tiles on high-refresh dashboards
1. Use bin() sizes matching refresh interval
1. Avoid expensive operations (regex, contains)
1. Test query performance at expected scale

6. Design Best Practices
6.1 Layout Guidelines
1. Place key metrics at top left (first scan area)
1. Group related visualizations together
1. Use consistent color schemes
1. Include context (time range, filters applied)
1. Add descriptive tile titles
1. Limit to 6-8 tiles per page for readability
6.2 Visualization Selection
1. Stat tiles: Current values and KPIs
1. Line charts: Trends over time
1. Bar charts: Category comparisons
1. Tables: Detailed event lists
1. Maps: Geographic distribution
1. Heatmaps: Multi-dimensional analysis
6.3 Color Usage
1. Red: Critical alerts, errors
1. Yellow/Orange: Warnings, attention needed
1. Green: Normal, healthy status
1. Blue: Informational, neutral
1. Consistent across all dashboards
6.4 Anti-Patterns to Avoid
1. Too many tiles (cognitive overload)
1. Inconsistent time ranges across tiles
1. Missing axis labels and legends
1. Over-complicated queries affecting refresh
1. No error handling for empty results
1. Mixing operational and analytical views

Appendix: Document Information
	Document Title
	Real-Time Dashboard Design Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
